Number of boomerangs¶
Time: O(N^2); Space: O(N); easy
Given n points in the plane that are all pairwise distinct, a “boomerang” is a tuple of points (i, j, k) such that the distance between i and j equals the distance between i and k (the order of the tuple matters).
Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000] (inclusive).
Example 1:
Input: points = [[0,0],[1,0],[2,0]]
Output: 2
Explanation:
The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]
[1]:
import collections
class Solution1(object):
"""
Time: O(N^2)
Space: O(N)
"""
def numberOfBoomerangs(self, points):
"""
:type points: List[List[int]]
:rtype: int
"""
result = 0
for i in range(len(points)):
group = collections.defaultdict(int)
for j in range(len(points)):
if j == i:
continue
dx, dy = points[i][0] - points[j][0], points[i][1] - points[j][1]
group[dx**2 + dy**2] += 1
for _, v in group.items():
if v > 1:
result += v * (v-1)
return result
[2]:
s = Solution1()
points = [[0,0],[1,0],[2,0]]
assert s.numberOfBoomerangs(points) == 2
[5]:
import collections
class Solution2(object):
def numberOfBoomerangs(self, points):
"""
:type points: List[List[int]]
:rtype: int
"""
cnt = 0
for a, i in enumerate(points):
dis_list = []
for b, k in enumerate(points[:a] + points[a + 1:]):
dis_list.append((k[0] - i[0]) ** 2 + (k[1] - i[1]) ** 2)
for z in collections.Counter(dis_list).values():
if z > 1:
cnt += z * (z - 1)
return cnt
[6]:
s = Solution2()
points = [[0,0],[1,0],[2,0]]
assert s.numberOfBoomerangs(points) == 2
See also:¶
https://leetcode.com/problems/number-of-boomerangs
https://www.lintcode.com/problem/number-of-boomerangs/description